Призма и ее элементы
Содержание
Изучение объемных фигур является задачей стереометрии — важной части пространственной геометрии. В стереометрии под призмой понимают такую фигуру, которая образована параллельным переносом произвольного плоского многоугольника на определенное расстояние в пространстве. Параллельный перенос предполагает такое перемещение, при котором поворот вокруг оси, перпендикулярной плоскости многоугольника, полностью исключен.
Вам будет интересно: Холю и лелею. Что значит лелеять и холить?
В результате описанного способа получения призмы образуется фигура, ограниченная двумя многоугольниками, имеющими одинаковые размеры, лежащими в параллельных плоскостях, и некоторым числом параллелограммов. Их количество совпадает с числом сторон (вершин) многоугольника. Одинаковые многоугольники называются основаниями призмы, а площадь их поверхности — это площадь оснований. Параллелограммы, соединяющие два основания, образуют боковую поверхность.
Элементы призмы
Для рисунка выше:
- Основания – равные многоугольники. Это могут быть треугольники, четырех-, пяти-, шестиугольники и т.д. В нашем случае – это параллелограммы (или прямоугольники) ABCD и A1B1C1D1.
Развёртка призмы – разложение всех граней фигуры в одной плоскости (чаще всего, одного из оснований). В качестве примера – для прямоугольной прямой призмы:
Примечание: свойства призмы представлены в отдельной публикации.
Правильная призма
Если боковые рёбра призмы перпендикулярны основанию, а в основании лежит правильный многоугольник, то призма называется правильной.
То есть правильная призма – это прямая призма, у которой в основании правильный многоугольник.
Тебе, скорее всего, может встретиться:
Правильная треугольная призма – в основании правильный треугольник, боковые грани – прямоугольники.
Правильная четырёхугольная призма – это ещё и разновидность прямоугольного параллелепипеда – в основании квадрат, боковые грани – прямоугольники.
Правильная шестиугольная призма – в основании правильный шестиугольник, боковые грани – прямоугольники.
Элементы призмы
Рассмотрим для примера такую вот призму.
Она пятиугольная и состоит из следующих элементов:
- Основание – их, как и положено, две штуки, в данном случае это пятиугольники ABCDE и KLMNP;
- Боковая грань – их количество равно количеству углов оснований, то есть тоже пять. Это параллелограммы ABKL, BCLM, CDMN, DENP и EAPK;
- Боковая поверхность – так называют сумму всех имеющихся боковых граней, которые мы перечислили выше;
- Полная поверхность – это сумма всех частей призмы;
- Боковое ребро – линии соединения боковых граней. В нашем случае это отрезки KA, LB, MC, ND и PE;
- Высота – отрезок, который соединяет основания призмы под прямым углом. В нашем случае KR. Это касается наклонных призм, у которых грани не перпендикулярны основаниям. В противном случае, высота совпадает с боковым ребром;
- Диагональ – отрезок (PВ), который соединяет две вершины призмы, не относящиеся к одной грани;
- Диагональная плоскость – плоскость, которая проходит через основание, боковую грань и диагональ. В нашем случае это BPE и BPL;
- Диагональное сечение – плоскость, которая образуется пересечением призмы и диагональной плоскостью. В нашем случае это параллелограмм BLPE. В частных случаях она может быть ромбом или квадратом.
Подобные элементы есть у каждой призмы, независимо от ее вида.
Задача с косоугольным параллелепипедом
Ниже на рисунке изображена косоугольная призма. Ее стороны равны: a=10 см, b = 8 см, с = 12 см. Необходимо найти площадь поверхности этой фигуры.
Сначала определим площадь основания. Из рисунка видно, что острый угол равен 50 o . Тогда его площадь равна:
Для определения площади боковой поверхности, следует найти периметр заштрихованного прямоугольника. Стороны этого прямоугольника равны a*sin(45 o ) и b*sin(60 o ). Тогда периметр этого прямоугольника равен:
Полная площадь поверхности этого параллелепипеда равна:
Подставляем данные из условия задачи для длин сторон фигуры, получаем ответ:
Из решения этой задачи видно, что для определения площадей косоугольных фигур используются тригонометрические функции.