0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Понятие четной и нечетной функции

Главное условие при исследовании функции на четность/нечетность — это симметричность области определения относительно 0. Если она не симметрична, то функция не является ни четной, ни нечетной, и дальнейшее исследование производить не нужно. Например, (D(y)in(-infty;+infty)) симметрична относительно 0, а (D(y):xin(-5;9)) — нет.

Четная функция

Функцию (f(x)) называют четной, если для любого значения х из области определения функции (f(x)) соблюдается равенство (f(-x)=f(x).)

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

График четной функции симметричен относительно оси Ох.

Возьмем произвольную точку (M(x,;f(x))) из области определения (f(x)) , тогда точка (M_1(-x,;f(x))) так же будет принадлежать графику, что следует из определения. Значит график данной функции будет симметричен относительно оси ординат.

Нечетная функция

Функцию (f(x)) называют нечетной, если для любого значения х из области определения функции (f(x)) соблюдается равенство (f(-x)=-f(x).)

График нечетной функции симметричен относительно начала координат (точки (0;0)).

Возьмем произвольную точку (M(x,;f(x))) из области определения (f(x)) , тогда точка (M_1(-x,;-f(x))) также будет принадлежать графику, что следует из определения. Значит график данной функции будет симметричен относительно начала координат.

Статья в тему:  Библиотечные программы. Рабочая программа "библиотечно-библиографические и информационные знания"

Четная и нечетная функция

Функция является четной функцией, когда f(-x)=f(x) для любого x из области определения. Такая функция будет симметрична относительно оси Oy .

Функция является нечетной функцией, когда f(-x)=-f(x) для любого x из области определения. Такая функция будет симметрична относительно начала координат O (0;0) .

Функция является ни четной, ни нечетной и называется функцией общего вида, когда она не обладает симметрией относительно оси или начала координат.

Исследуем на четность нижеприведенную функцию:

D(f)=(-infty ; +infty ) с симметричной областью определения относительно начала координат. f(-x)= 3 cdot (-x)^<3>-7 cdot (-x)^<7>= -3x^<3>+7x^<7>= -(3x^<3>-7x^<7>)= -f(x) .

Значит, функция f(x)=3x^<3>-7x^ <7>является нечетной.

Функция общего вида

Функцию $y=f(x)$, которая имеет своей областью определения множество $X$, будем называть функцией общего вида, если она не будет ни четной, ни нечетной.

Для того чтобы понять, что данная функция является функцией общего вида, необходимо в его аналитической записи заменить переменную $x$ на переменную $—x$, произвести, при необходимости элементарные преобразования, и проверить невыполнение условий определений 1 и 2.

Функция общего вида никогда не будет симметрична оси ординат и началу координат. Пример функции общего вида изображен на рисунке 3.

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Четность и нечетность функций»

· повторить такое свойство функции, как чётность и нечётность.

Статья в тему:  Александр чичкин. Александр Чичкин - владелец «молочной империи», о котором забыли на Родине, но помнят в Японии. Отделка лестничной клетки конторских помещений

Прежде давайте вспомним свойства функций, о которых мы уже говорили. Это: область определения функции, область значений функции, нули функции, промежутки знакопостоянства функции, промежутки монотонности функции.

Для того чтобы мы могли говорить о чётности, еще раз давайте повторим, что мы понимаем под областью определения функции.

Определение.

Область определения функции – это все значения, которые может принимать аргумент.

Теперь вспомним, что

Теперь давайте разберёмся с этим определением по подробней. Первым условием является то, что область определения функции должна быть симметрична относительно икс равного нулю. Что это значит? Это значит, что если число А принадлежит области определения, то и число минус А тоже принадлежит области определения этой функции.

Второе условие чётности говорит о том, что:

Если посмотреть на график чётной функции, то можно увидеть, что он будет симметричен относительно оси ординат.

Если же нарушается первое условие, то есть область определения функции – не симметричное относительно x = 0 множество, то такая функция не обладает свойством чётности.

Теперь давайте вспомним какую функцию называют нечётной.

Если мы посмотрим на график нечётной функции, то нетрудно увидеть, что он симметричен относительно начала координат.

Мы с вами уже рассмотрели некоторые элементарные функции, их свойства и графики. А теперь давайте попробуем определить какие из этих функций являются чётными, нечётными, ни чётными, ни нечётными.

Статья в тему:  Целеустремленность: как развить эту способность? Как проявляется целеустремлённость. Целеустремленность человека или как добиться поставленной цели

Итак, начнём с прямой пропорциональности. Область определения прямой пропорциональности – вся числовая прямая, то есть говорить о чётности или нечётности, мы можем. Подставим вместо х -x и получим, что y(-x) = —y(x), то есть прямая пропорциональность – нечётная функция.

Если мы посмотрим на графики прямой пропорциональности, то увидим, что эти графики симметричны относительно начала координат.

Теперь давайте рассмотрим обратную пропорциональность.

Область определения этой функции – симметричная относительно x = 0 область, то есть говорить о чётности или нечётности этой функции можно.

Подставим вместо х и получим, что y(-x) = —y(x), то есть обратная пропорциональность – нечётная функция.

Следующей мы рассмотрим линейную функцию.

Область определения функции – вся числовая прямая, то есть область определения – симметричное множество. Подставим вместо х -х, тогда получим что:

То есть линейная функция не является ни чётной, ни нечётной.

Рассмотрим функцию y = │x│.

Область определения этой функции – вся числовая прямая. То есть можно проверить эту функцию на чётность и нечётность. Подставим вместо х -х. По свойству модуля:

Тогда получим, что функция игрек равно модуль икс – чётная функция.

Теперь поговорим о функции у = х 2 .

Область определения – вся числовая прямая.

Подставим вместо х -х. По свойству квадрата выражения, получим, что:

то есть функция чётная.

Рассмотрим квадратичную функцию.

Область определения – вся числовая прямая.

Статья в тему:  Чему равняется аршин. Значение слова аршин. Подробнее о длине и расстоянии

Подставим вместо х -х и получим, что:

то есть квадратичная функция не является ни чётной, ни нечётной.

Теперь давайте рассмотрим функцию:

Область определения функции – промежуток [0; + ∞) – это не симметричное относительно точки x = 0 множество, то есть мы сразу можем написать, что о чётности или нечётности этой функции говорить нельзя.

Теперь давайте рассмотрим функцию y = x 3 . Область определения – вся числовая прямая. Подставим вместо x x и получим, что:

то есть перед нами нечётная функция.

Теперь давайте решим несколько заданий.

Рассмотрим ещё один пример.

Сегодня на уроке мы повторили такое свойство функций как чётность. Вспомнили какая функция называется чётной, а какая – нечётной.

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector