Интервальный вариационный ряд и его характеристики
Содержание
- 1 Интервальный вариационный ряд и его характеристики
- 1.1 Интервальный вариационный ряд и его характеристики
- 1.1.1 п.1. Построение интервального вариационного ряда по данным эксперимента
- 1.1.2 п.2. Гистограмма и полигон относительных частот, кумулята и эмпирическая функция распределения
- 1.1.3 п.3. Выборочная средняя, мода и медиана. Симметрия ряда
- 1.1.4 п.4. Выборочная дисперсия и СКО
- 1.1.5 п.5. Исправленная выборочная дисперсия, стандартное отклонение выборки и коэффициент вариации
- 1.1.6 п.6. Алгоритм исследования интервального вариационного ряда
- 1.1.7 п.7. Примеры
- 1.1 Интервальный вариационный ряд и его характеристики
Интервальный вариационный ряд и его характеристики
п.1. Построение интервального вариационного ряда по данным эксперимента
Интервалы, (left.left[a_ | (left.left[a_<0>,a_1right.right)) | (left.left[a_<1>,a_2right.right)) | . | (left.left[a_ |
Частоты, (f_i) | (f_1) | (f_2) | . | (f_k) |
Здесь k — число интервалов, на которые разбивается ряд.
Скобка (lfloor rfloor) означает целую часть (округление вниз до целого числа).
Скобка (lceil rceil) означает округление вверх, в данном случае не обязательно до целого числа.
Алгоритм построения интервального ряда
На входе: все значения признака (left
Шаг 1. Найти размах вариации (R=x_
Шаг 2. Найти оптимальное количество интервалов (k=1+lfloorlog_2 Nrfloor)
Шаг 3. Найти шаг интервального ряда (h=leftlceilfrac
Шаг 4. Найти узлы ряда: $ a_0=x_
На выходе: интервальный ряд с интервалами (left.left[a_
Заметим, что поскольку шаг h находится с округлением вверх, последний узел (a_kgeq x_
Например:
Проведено 100 измерений роста учеников старших классов.
Минимальный рост составляет 142 см, максимальный – 197 см.
Найдем узлы для построения соответствующего интервального ряда.
По условию: (N=100, x_
Размах вариации: (R=197-142=55) (см)
Оптимальное число интервалов: (k=1+lfloor 3,322cdotlg 100rfloor=1+lfloor 6,644rfloor=1+6=7)
Шаг интервального ряда: (h=lceilfrac<55><5>rceil=lceil 7,85rceil=8) (см)
Получаем узлы ряда: $ a_0=x_
(left.left[a_ | (left.left[142;150right.right)) | (left.left[150;158right.right)) | (left.left[158;166right.right)) | (left.left[166;174right.right)) | (left.left[174;182right.right)) | (left.left[182;190right.right)) | (left[190;198right]) |
п.2. Гистограмма и полигон относительных частот, кумулята и эмпирическая функция распределения
Например:
Продолжим анализ распределения учеников по росту.
Выше мы уже нашли узлы интервалов. Пусть, после распределения всех 100 измерений по этим интервалам, мы получили следующий интервальный ряд:
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
(left.left[a_ | (left.left[142;150right.right)) | (left.left[150;158right.right)) | (left.left[158;166right.right)) | (left.left[166;174right.right)) | (left.left[174;182right.right)) | (left.left[182;190right.right)) | (left[190;198right]) |
(f_i) | 4 | 7 | 11 | 34 | 33 | 8 | 3 |
Найдем середины интервалов, относительные частоты и накопленные относительные частоты:
(x_i) | 146 | 154 | 162 | 170 | 178 | 186 | 194 |
(w_i) | 0,04 | 0,07 | 0,11 | 0,34 | 0,33 | 0,08 | 0,03 |
(S_i) | 0,04 | 0,11 | 0,22 | 0,56 | 0,89 | 0,97 | 1 |
Построим гистограмму и полигон:
Построим кумуляту и эмпирическую функцию распределения:
Эмпирическая функция распределения (относительно середин интервалов): $ F(x)= begin
п.3. Выборочная средняя, мода и медиана. Симметрия ряда
Расположение выборочной средней, моды и медианы в зависимости от симметрии ряда аналогично их расположению в дискретном ряду (см. §65 данного справочника).
Например:
Для распределения учеников по росту получаем:
(x_i) | 146 | 154 | 162 | 170 | 178 | 186 | 194 | ∑ |
(w_i) | 0,04 | 0,07 | 0,11 | 0,34 | 0,33 | 0,08 | 0,03 | 1 |
(x_iw_i) | 5,84 | 10,78 | 17,82 | 57,80 | 58,74 | 14,88 | 5,82 | 171,68 |
$ X_
Данные для расчета моды: begin
Данные для расчета медианы: begin
При этом (frac<|M_o-X_
п.4. Выборочная дисперсия и СКО
Например:
Для распределения учеников по росту получаем:
$x_i$ | 146 | 154 | 162 | 170 | 178 | 186 | 194 | ∑ |
(w_i) | 0,04 | 0,07 | 0,11 | 0,34 | 0,33 | 0,08 | 0,03 | 1 |
(x_iw_i) | 5,84 | 10,78 | 17,82 | 57,80 | 58,74 | 14,88 | 5,82 | 171,68 |
(x_i^2w_i) — результат | 852,64 | 1660,12 | 2886,84 | 9826 | 10455,72 | 2767,68 | 1129,08 | 29578,08 |
$ D=sum_^k x_i^2 w_i-X_
п.5. Исправленная выборочная дисперсия, стандартное отклонение выборки и коэффициент вариации
Подробней о том, почему и когда нужно «исправлять» дисперсию, и для чего использовать коэффициент вариации – см. §65 данного справочника.
Например:
Для распределения учеников по росту получаем: begin
п.6. Алгоритм исследования интервального вариационного ряда
На входе: все значения признака (left
Шаг 1. Построить интервальный ряд с интервалами (left.right[a_
Шаг 2. Составить расчетную таблицу. Найти (x_i,w_i,S_i,x_iw_i,x_i^2w_i)
Шаг 3. Построить гистограмму (и/или полигон) относительных частот, эмпирическую функцию распределения (и/или кумуляту). Записать эмпирическую функцию распределения.
Шаг 4. Найти выборочную среднюю, моду и медиану. Проанализировать симметрию распределения.
Шаг 5. Найти выборочную дисперсию и СКО.
Шаг 6. Найти исправленную выборочную дисперсию, стандартное отклонение и коэффициент вариации. Сделать вывод об однородности выборки.
п.7. Примеры
Пример 1. При изучении возраста пользователей коворкинга выбрали 30 человек.
Получили следующий набор данных:
18,38,28,29,26,38,34,22,28,30,22,23,35,33,27,24,30,32,28,25,29,26,31,24,29,27,32,24,29,29
Постройте интервальный ряд и исследуйте его.
1) Построим интервальный ряд. В наборе данных: $ x_
Оптимальное число интервалов: (k=1+lfloorlog_2 30rfloor=1+4=5)
Шаг интервального ряда: (h=lceilfrac<20><5>rceil=4)
Получаем узлы ряда: $ a_0=x_
(left.left[a_ | (left.left[18;22right.right)) | (left.left[22;26right.right)) | (left.left[26;30right.right)) | (left.left[30;34right.right)) | (left.left[34;38right.right)) |
Считаем частоты для каждого интервала. Получаем интервальный ряд:
(left.left[a_ | (left.left[18;22right.right)) | (left.left[22;26right.right)) | (left.left[26;30right.right)) | (left.left[30;34right.right)) | (left.left[34;38right.right)) |
(f_i) | 1 | 7 | 12 | 6 | 4 |
2) Составляем расчетную таблицу:
(x_i) | 20 | 24 | 28 | 32 | 36 | ∑ |
(f_i) | 1 | 7 | 12 | 6 | 4 | 30 |
(w_i) | 0,033 | 0,233 | 0,4 | 0,2 | 0,133 | 1 |
(S_i) | 0,033 | 0,267 | 0,667 | 0,867 | 1 | — |
(x_iw_i) | 0,667 | 5,6 | 11,2 | 6,4 | 4,8 | 28,67 |
(x_i^2w_i) | 13,333 | 134,4 | 313,6 | 204,8 | 172,8 | 838,93 |
3) Строим полигон и кумуляту
Эмпирическая функция распределения: $ F(x)= begin
Данные для расчета моды: begin
На кумуляте медианным является 3й интервал (преодолевает уровень 0,5).
Данные для расчета медианы: begin
При этом (frac<|M_o-X_
5) Находим выборочную дисперсию и СКО: begin
6) Исправленная выборочная дисперсия: $ S^2=fracapprox 4,2)
Коэффициент вариации: (V=frac<4,2><28,7>cdot 100text<%>approx 14,7text<%>lt 33text<%>)
Выборка однородна. Найденное значение среднего возраста (X_